توسعه مدلی عامل-مبنا برای شبیه‌سازی گسترش کاربری اراضی شهری (مطالعه موردی: قزوین)

نویسندگان

چکیده

گسترش شهرها و مناطق شهری پدیده‌ای آشنا در کشورهای در حال توسعه به شمار می‌رود. افزایش جمعیت و مهاجرت روستاییان به شهرها دو عامل اصلی در بروز این پدیده است. وجود این عوامل باعث کم ‌اثر شدن اقداماتی شده است که؛ به صورت قهری و جبری سعی در محدود نگه داشتن کران شهرها دارند. از این رو برنامه‌ریزان همواره به دنبال مدل‌هایی بوده‌اند که گسترش کاربری اراضی شهری را به خوبی شبیه‌سازی کند تا بتوان با برنامه‌ریزی صحیح از رشد نامتوازن شهرها و پیامدهای مشکل‌ساز آن جلوگیری نموده و توسعه را به سمت و سویی مطلوب هدایت نمایند. تا کنون مدل‌های زیادی برای شبیه‌سازی گسترش کاربری اراضی شهری پیشنهاد و آزمایش شده است. گرچه این مدل‌ها دارای تنوع زیادی هستند، صرف نظر از قدرت و دقت‌های حاصل شده، می‌توان گفت که بیشتر آنها بر شبیه‌سازی گسترش کاربری اراضی در اطراف یک شهر متمرکز بوده‌اند بنابراین، مدل‌های منطقه‌ای که محدوده‌های وسیع‌تر از یک شهر را در نظر بگیرند نادرند. در این تحقیق یک مدل عامل-‌مبنای نوین برای شبیه‌سازی گسترش کاربری اراضی شهری و مسکونی در شهرستان‌های قزوین و البرز به مساحت 1620 کیلومتر مربع واقع در استان قزوین ایجاد و پیاده‌سازی شده است. در این مدل، توسعه‌دهندگان زمین به صورت عامل‌هایی در نظر گرفته شده-اند که در منطقه به صورت مشخص به حرکت و کاوش می‌پردازند و شرایط نقاط مختلف را برای توسعه سنجیده، مطلوب‌ترین آنها را توسعه می‌دهند. محیط حرکت عامل‌ها سلولی است و عامل‌های مورد استفاده که به پنج دسته با سلایق و اهداف مختلف تقسیم شده‌اند ممکن است برای توسعه برخی سلول‌ها وارد رقابت شوند. علاوه بر این، نظر به ماهیت مکانی مسأله، برای فراهم سازی بستر حرکت و جستجوی عامل‌ها و نیز جمع‌بندی و تحلیل نتایج به دست آمده از سامانه اطلاعات جغرافیایی (GIS) استفاده گردیده است. برای سنجش عملکرد مدل از داده‌های مربوط به سال 1384 به عنوان ورودی مدل و از داده‌های سال 1389 به منظور ارزیابی نتایج استفاده شد. با تنظیم پارامترهای مدل، حداکثر میزان نزدیکی پاسخ‌های مدل به توسعه‌های حادث شده به دست آمد که بر مبنای شاخص کاپا به اندازه %17/78 محاسبه گردید. این نتایج نشان می‌دهد که دقت مدل در تخمین توسعه‌های صورت گرفته مناسب است و با توجه به ابعاد محیط شبیه‌سازی، مدل به خوبی توانسته است مناطقی را که دارای توسعه سریع شده‌اند تشخیص دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Developing an Agent-Based Model to Simulate Urban Land-Use Expansion (Case Study: Qazvin)

نویسندگان [English]

  • A. A. Alesheikh
  • F. Hosseinali
  • F. Nourian
چکیده [English]

Developing an Agent-Based Model to Simulate Urban Land-Use Expansion (Case Study: Qazvin)F. Hosseinali, A. A. Alesheikh, F. NourianReceived: August 29, 2011/ Accepted: January 16, 2012, 1-6 PExtended abstract1-IntroductionUrban land-use expansion is a challenging issue in developing countries. Increases in population as well as the immigration from the villages to the cities are the two major factors for that phenomenon. Those factors have reduced the influence of efforts that try to limit the cities’ boundaries. Thus, spatial planners always look for the models that simulate the expansion of urban land-uses and enable them to prevent unbalanced expansions of cities and guide the developments to the desired areas. Several models have been developed and evaluated for simulating urban land-use expansions. Despite the variety of the models, most of them have focused on simulating urban land-use expansions just around a city. Thus, the regional models that consider wider area are of primary importance.2- Theoretical basesIn this study a new agent-based model has been developed and implemented to simulate urban land-use expansion in Qazvin and Alborz regions of Qazvin state which have an area of 1620 square kilometers. In this model, land-use developers have been treated as agents that move in the landscape explicitly and assess the state of parcels for development. So, the environment of the model is raster. The agents are developed into five groups which have different aims. The agents may fall in competition to develop the same parcels. Moreover, due to the spatial essence of the problem, GIS were used to prepare the environment of agents’ movement and search and to aggregate and analyze the results.Two main steps can be recognized in this model: the Searching step and the Development step:Searching step: The agents are created and distributed in the districts. The selection of districts is probabilistic and is based on the primary probability of selection, assumed for districts. When agents go to the districts, at first they move randomly to the neighborhood of pre-developed areas. Wherever the agent starts its activities, it assesses and saves the state of its current parcel and also its eight adjacent parcels. Next, the agent moves to its best neighbor parcel, or if more than one parcel achieves the same score, it chooses one of them randomly. If the agent movement is finished or it is not able to move to a neighbor parcel, the agent changes the search region in the district and jumps to another position in the same district. Moreover, the agents can search a specific number of districts in the same way. Thus, at the end of each Searching step, each agent records the situation of several visited parcels and sorts them in descending order.Developing step: When all agents finish the search, the Developing step starts, and agents choose the top scoring parcels in their sorted list to develop. In the conflict cases, a competition determines the winner and the loser(s).3– DiscussionIn this research, the agents play the role of land-use developers which assess the land parcels and develop the desired ones. Thus, the agents should have an important characteristic which is called bounded rationality. This means that the knowledge of each agent about its environment is limited. In this model, the agents search a definite number of parcels and they are divided into five categories. With these two mentioned characteristics, the developers are treated as the agents with bounded rationality. The model has several parameters which should be set before running. The parameters were set in two ways. Some of them like the weights of the input layers were set by experts. To set the others, several sets of parameters were considered and the model ran with each set. Therefore, the best set of parameters which caused the best result of the model was found.To evaluate the model, data of year 2005 were used as the input and data of year 2010 were used for checking the results. By calibrating the model, the most desired configuration of the model was found and the results were close to the reality as the Kappa index raised up to 78.17 percent. These results show that the precision of the model to simulate land-use developments is good. Thus, the model is able to detect the area that faced rapid urban land-use expansions.4– ConclusionThis paper presented the concepts and specifications of an agent-based model for the simulation of urban land-use sprawl in a Geographical Information Systems (GIS) environment. The multi-agent system of residential development implemented in this paper demonstrated the ability of agent-based models to simulate urban land-use development. Furthermore, the results affirmed that linking GIS with ABM can enhance the capabilities of a simulation / modeling system for spatial problem purposes. A newly developed method for searching landscapes, selecting parcels and having competitions among agents, bring us better ways to simulate the behavior of land-use developers. 5– SuggestionsWhile the application of simulations to study human-landscape interactions is burgeoning, developing a comprehensive and empirically based framework for linking the social, biophysical and geographic disciplines across space and time remains for further research. Furthermore, developing the agents to make more complex decisions, as well as, establishing a framework for direct linking of the agents are suggested for future researches.Keywords: Agent-based modeling, urban land-use expansion, competition, GISReferencesAgarwal C., Green G.M., Grove J.M., Evans T., and  Schweik, T., (2002) A review and assessment of land-use change models: Dynamics of space, time, and human choice. Burlington, VT: USDA Forest Service Northeastern Forest Research Station Publication NE-297.Alesheikh, A.A., Soltani, M.J., Nouri, N., and Khalilzadeh, M., (2008) “Land Assessment for _Flood Spreading Site Selection Using Geospatial Information System" International Journal of _Environmental Science and Technology, Vol. 5, No. 4, pp 455-462.Aslani Moghddam, I., (2009) Assessing Vector Model of Cellullar Automata to Predict Land-Use Changes, M.S. Thesis. Supervisor: Dr. M.A. Rajbi. Department of surveying, Faculty of Engineering, University of Tehran.Baker W.L., (1989) A review of models in landscape change. Landscape Ecology, Vol.2, No.2, pp: 111-133.Batty, M., (2005) Cities and Complexity, Understanding Cities with Cellular Automata, Agent-Based Models and Fractals. The MIT Press, Cambridge, Massachusetts.Benenson, I., Torrens, P., (2004) Geosimulation Automata-based Modeling of Urban Phenomena, John Wiley & Sons, LTD.Brown, D.G., (2006) Agent-Based Models, The Earth’s Changing Land: An Encyclopedia of Land-Use and Land-Cover change, Geist H (Ed.), Westport CT: Greenwood Publishing Group, p: 7-13.Burrough, P.A., (1986) Principles of Geographic Information Systems for Land Resources Assessment. Clarendo Press. Oxford, 194 pp.Conte, R., Hegselmann, R., and Terna, P., (1997) Simulation Social Phenomena. Springer, Berlin.Crooks, A., Castle, C. & Batty, M. (2008). Key challenges in agent-based modelling for geo-spatial simulation. Computers, Environment and Urban Systems, 32, 417-430.EPA., (2000) Projecting Land-Use Change: A Summary of Models for Assessing the Effects of Community Growth and Change on Land-Use Patterns. Cincinnati, OH: U.S.Environmental Protection Agency, Office of Research and Development Publication EPA/600/R-00/098.Feitosa, F.F., Le, Q.B. and Vlek, P.L.G., (2011) Multi-agent Simulator for Urban Segregation (MASUS): A Tool to Explore alternatives for Promoting Inclusive Cities. Computers, Environment and Urban Systems, 35, 104–115.Gimblett, R.H., (Ed.)(2002) Integrating Geographic Information Systems and Agent-based Modeling Techniques, Oxford University Press, Oxford.Javadi Dodaran, Y., (2009) Modeling of Land-use Changes Using Cellular Automata in GIS Environment, M.S. Thesis. Supervisor: Dr. M.A. Rajbi. Department of surveying, Faculty of Engineering, University of Tehran.Kamyab, H.R., (2008) Modeling Physical Development of Gorgan City Using Remote Sensing Data and Logistic Regression, M.S. Thesis. Supervisors: Hossein, S.M., and Salman Mahini, A. Advisors: Ghasempouri, M. and Gholamali Fard, M., Faculty of Natural Resource and Marine Science,Tarbiat Modarres University.Lambin, E. F., (1994) Modelling Deforestation Processes: A Review. Luxembourg: European Commission, Directorate-General XIII. Report no. EUR-15744-EN.Ligmann-Zielinska, A., & Jankowski, P. (2010). Exploring normative scenarios of land use development decisions with an agent-based simulation laboratory. Computers, Environment and Urban Systems, 34, 409–423.Ligmann-Zielinska, A., and Jankowski, P., (2007) Agent-Based Models as Laboratories for Spatially Explicit Planning Policies, Environment and Planning B: Planning and Design, Vol.34. pp: 316-335.Loibl, W., & Toetzer, T., (2003) Modeling growth and densification in suburban regions-simulation of landscape transition with spatial agents. Environmental Modelling & Software, 18,553-563.Macal C.M. and North M.J., (2007) Agent-Based Modeling and Simulation: Desktop ABMS, In: S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, (eds). Proceedings of the 2007 Winter Simulation Conference, Argonne National Laboratory, pp: 743-760.Maes, P., (1994) Modeling adaptive autonomous agents. Artificial Life, 1, 135-162.Malleson, N., Heppenstall A., & See, L. (2010). Crime reduction through simulation: An agent-based model of burglary. Computers, Environment and Urban Systems, 34, 236–250.Masuda J.R. and Garvin, T., (2008) Whose Heartland?: The politics of place in a rural–urban interface, Journal of Rural Studies, Volume 24, Issue 1, Pages 112-123.Matthews R., Gilbert N., Roach A., Polhill J.G. and Gotts N.M., 2007, Agent-based land-use models: a review of applications, Landscape Ecology, Vol.22, pp:1447-1459.Miller E., Hunt J.D., Abraham J.E. and Salvini P.A., 2004, Microsimulating urban systems, Computers Environment and Urban Systems, Vol.28, pp: 9-44.Mousavi, M.N., Saeidabadi, R., and Fahar, R. (2010) Modeling Anatomical Development and Optimum Site Selection for Sardasht Population Settlement in 2021 using Delphi Method and Boolean Logic in GIS Environment. Urban-Regional Studies and Research, Vol.2, No. 6, pp: 35-54.Otter H.S., Veen A. van der and Vriend H.J. de, (2001) ABLooM: Location behaviour, spatial patterns, and agent-based modelling. JASSS journal of artificial societies and social simulation,Vol4., No.4, pp: U28-U54.Parker D. C. and Meretsky V., 2004, Measuring Pattern Outcomes in an Agent-Based Model of Edge-Effect Externalities Using Spatial Metrics, Agriculture Ecosystems and Environment, Vol.101, pp:233-250. Parker, D.C., Manson, S.M., Janssen, M.A., Hoffman, M.J., & Deadman, P., (2003) Multi-agent systems for the simulation of land use and land cover change: A review. Annals of the Association of American Geographers, 93, 314–337.Pijanowski, B. C., Pithadia, S., Shellito, B. A. and Alexandridis, K., (2005) Calibrating aneural network-based urban change model for two metropolitan areas of Upper Midwestof the United States. International Journal of Geographical Information Sciences, 19, pp.197-215.Plantinga A.J., (1999) The Economics of Land Use: A Bibliography. Orono, ME: The Agricultural and Forest Experiment Station, University of Maine Publication 744.Qarakhlou, M., PourKhabbaz, H.R., Amiri, M.J. and Faraji Sabkbar, H., (2009) Ecological Capability Evaluation of Qazvin Region to Determine Potential Points of Urban Developments using Geographical Information System, Urban-Regional Studies and Research, Vol.1, No. 2, pp: 51-68.Statistical Centre of Iran, General Population and Housing Census Data, 1996 and 2006. www.amar.org.irTayyebi, A., (2010) Prediction and Evaluation of Urban Land Use Change, M.S. Thesis. Supervisors: Delavar,. M.R., Yazdanpanah, M.J. and Pijanowski, B.C., Department of surveying, Faculty of Engineering, University of Tehran.Torrens P.M., (2003) Cellular automata and multi-agent systems as planning support tools, In: S Geertman, J Stillwell (Eds), Planning Support Systems in Practice, Springer, New York, pp: 203-222.United Nations, Population Division, http://esa.un.org/unpd/wup/unup/index_panel1.htmlValbuena, D., Verburg, P.H., Bregt, A.K., & Ligtenberg, A. (2009). An agent-based approach to model land-use change at a regional scale. Landscape Ecology, 25, 185-199.Waddell, P., (2001) Towards a Behavioral Integration of Land Use and Transportation Modeling, 9th International Association of Travel Behavior Conference, Quensland, Australia, July 2000, www.urbanism.org (accessed August 2011)Wooldridge, M.J., (2002) An Introduction to MultiAgent Systems. John Wiley an Sons, LTD. 

کلیدواژه‌ها [English]

  • agent
  • Agent-based modeling
  • based modeling
  • urban land-use expansion
  • urban land
  • use expansion
  • Competition
  • GIS